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Abstract

Safe reinforcement learning tasks with multiple constraints are a challenging
domain despite being very common in the real world. To address this challenge, we
propose Objective Suppression, a novel method that adaptively suppresses the task
reward maximizing objectives according to a safety critic. We benchmark Objective
Suppression in two multi-constraint safety domains, including an autonomous
driving domain where any incorrect behavior can lead to disastrous consequences.
Empirically, we demonstrate that our proposed method, when combined with
existing safe RL algorithms, can match the task reward achieved by our baselines
with significantly fewer constraint violations.

1 Introduction

Reinforcement learning (RL) is a general approach to solving challenging tasks in many domains such
as robotics, navigation, and even generative modeling. Policies learned with RL seek to maximize a
“task reward” which can be specified either via manually defined functions or through learned models.
However, without careful tuning of this reward function, it can be difficult for policies to learn to
perform well in safety-critical situations like those in the autonomous driving domain. In order to
reliably use RL policies in safety-critical situations, we consider the use of constrained RL in order
to prevent the policy from exhibiting dangerous behavior. Most prior works on constrained or safe
RL have only considered a single constraint violation; however, in most real-world settings there are
often multiple constraints that can even be conflicting, which is under-explored in prior work. Take
for instance the case of autonomous driving, two very simple constraints are (1) avoiding collision
and (2) maintaining a buffer distance from static objects. In some cases, it is impossible to satisfy
both constraints while also simultaneously making progress along the ego route.

Existing safe RL works rarely address the multi-constraint issue. Methods that rely on linearly
combining the task reward and constraints can struggle to assign a set of weights for all the constraints
without some of the constraints being overshadowed by others; hierarchical methods, on the other
hand, can face difficulties in building multiple hierarchies. In light of this, we present a method called
Objective Suppression that makes adaptive choices of suppressing and balancing the task reward
objective and constraint-satisfying objectives. Objective Suppression can be easily combined with
existing safe RL approaches like Recovery RL as a new regime of constraint-enforcing methods,
which is shown to help policies handle multiple conflicting constraints.

Symposium on Machine Learning for Autonomous Driving (ML4AD 2023).



We empirically test our method in two challenging domains featuring multiple constraints: a Mujoco-
Ant [17, 4] domain with dynamic obstacles, where our method lowers the number of collisions by
33%; and the Safe Bench [19] domain, where our method reduces the constraint violations by at least
half. In both domains, our method achieves the results without significant sacrifice of task reward.

2 Related Works

Lagrangian Methods Lagrangian relaxation [2, 3] uses a primal-dual method to turn the con-
strained optimization problem of safe RL into an unconstrained one. [6] demonstrates Lagrangian
relaxation can be adopted to safe RL problems and achieve satisfying empirical performances.
RCPO [15] turns Lagrangian multipliers into reward penalty weights to reach constrained goals with
both theoretical and empirical evidence.

Hierarchical Methods Another way of solving safe RL problems is to apply a safety layer [7] on
top of the task reward-maximizing policy. [7] derives a closed-form solution for action correction by
learning a linearized model. Recovery RL [16] learns a parameterized recovery policy that leads the
agent away from dangerous areas.

Learning in Autonomous Vehicles Most prior work in learning-based methods in AV relies on
behavior cloning approaches [11, 14]. Some methods add layers of hierarchy [5] in order to learn
improved BC policies but can still struggle with safety. Pure cloning-based approaches have been
demonstrated to be insufficient to handle long-tail cases or ensure safety [12, 10] which motivates the
exploration of RL-based approaches.

3 Preliminaries

Constrained MDPs We describe a safe RL problem under the assumption of a Constrained
Markov Decision Process (CMDP, [2, 9, 1]), where the agent is required to maximize its expected
return while ensuring all the safety constraints are met. Formally, a CMDP is defined as a 7-tuple
(S,A, P,R, γ, C, ϵ, µ0), where S is the state space, A is the action space, P : S × A × S → [0, 1]
is the stochastic state transition function, R : S × A × S → R is the task reward function, γ is
the discount factor, C = {(Ci : S → {0, 1}, γCi)} is the set of constraints and their corresponding
discount factors, ϵ ∈ R+ is the constraint violation limit, and µ0 : S → [0, 1] is the initial state
distribution. Let n = |C| denote the number of constraints. In the context of safe RL, these constraints
are also risks.

For a stochastic policy π : S ×A → [0, 1], the task state value function, state-action value function,
and advantage function are:

V π
R (s) := Eτ∼π

[ ∞∑
t=0

γtR(st, at, st+1)|s0 = s

]
(1)

Qπ
R(s, a) := Eτ∼π

[ ∞∑
t=0

γtR(st, at, st+1)|s0 = s, a0 = a

]
(2)

Aπ
R(s, a) := Qπ(s, a)− V π(s) (3)

(4)

Similarly, the state value function, state-action value function, and advantage function for risk
constraints i = 1, . . . n are:
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V π
Ci
(s) := Eτ∼π

[ ∞∑
t=0

γt
Ci
Ci(st)|s0 = s

]
(5)

Qπ
Ci
(s, a) := Eτ∼π

[ ∞∑
t=0

γt
Ci
Ci(st)|s0 = s, a0 = a

]
(6)

Aπ
Ci
(s, a) := Qπ

Ci
(s, a)− V π

Ci
(s) (7)

Let J π
R = Es∼µ0

[V π
R (s)] and J π

Ci
= Es∼µ0

[
V π
Ci
(s)

]
for i = 1, . . . , n. The objective of a safe RL

problem is to solve the following constrained optimization problem:

π∗ := argmax
π

J π
R where J π

Ci
≤ ϵ for all i = 1, . . . , n (8)

Hierarchical methods One regime of solving CMDPs is to apply a safety layer to adjust the unsafe
actions [7, 16, 20]. The safety layer overwrites the proposed actions that are deemed unsafe according
to the safety critic Qπ

Ci
:

at =

{
a ∼ π(s) if Qπ

Ci
(st, a) ≤ ϵ for all i ∈ {1, . . . , n},

a ∼ σ(s) otherwise. (9)

σ : S × A → [0, 1] is a safety-ensuring policy. One choice of σ is to project the actions into a
feasible space [13, 7], e.g., σ(s) = argmina ∥a − ã∥ s.t. Qπ

Ci
(st, a) ≤ ϵ for all i ∈ {1, . . . , n},

where ã ∼ π(s). Another choice is to use a separate parameterized policy [16, 20]. Recovery RL [16]
trains a recovery policy to minimize the constraint violations, i.e., σ∗ = argminσ

∑n
i=1 wiJ (π,σ)

Ci
.

Policy parameterization In this work we consider parameterized policies denoted as πθ. The
derived gradients [18] of J πθ

R and J πθ

Ci
are:

∇θJ πθ

R = Eτ∼πθ

[ ∞∑
t=0

AR(st, at)∇θ log π(st, at; θ)

]
, (10)

and

∇θJ πθ

Ci
= Eτ∼πθ

[ ∞∑
t=0

ACi
(st, at)∇θ log π(st, at; θ)

]
. (11)

4 Objective Suppression

We observe that previous safe RL algorithms struggle in multi-constraint scenarios. We propose a
new method to enforce safety constraints on policy optimization based on adaptively suppressing the
task reward objectives that combines well with other safe RL algorithms such as Recovery RL in
multiple constraint scenarios.

Objective suppression We propose a new method to enforce safety constraints on policy opti-
mization. To solve (8), we want to train a policy that automatically switches between optimizing
for task reward objective J π

R and risk minimization objective J π
Ci

. One way to accomplish this
is to switch the optimization objective in hindsight. Specifically, at step t of a trajectory τ , if any
risk is encountered after t, we then switch to the risk minimization objective; otherwise, we re-
main using the original task reward objective. Let zt,i(τ) = 1 [τ encounters risk i after step t] and
zt,−(τ) = 1 [τ encounters no risk after step t] =

∏
i 1− zt,i(τ). The hard-switching objective is

∇θJ πθ
switch = Eτ

[
∞∑
t=0

(
zt,−(τ)AR(st, at)−

n∑
i=1

wizt,i(τ)ACi(st, at)

)
∇θ log π(st, at; θ)

]
(12)
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w1, . . . , wn are the weights to balance the different risk minimization objectives. The hard-switching
objective (12) is an interpolation of ∇θJ πθ

R and ∇θJ πθ

Ci
. However, this objective faces problems in

practice. For one, the hard-switching between multiple objectives raises the variance of the gradient,
which is widely acknowledged to have a negative impact on training; for another, balancing the
different objectives with weights introduces a new set of hyperparameters. If handled improperly,
some of the objectives will become dominant of others and can result in disastrous outcomes.

To deal with the aforementioned two problems, we rewrite (12) into:

∇θJ πθ
switch =

∞∑
t=0

Eτ

[(
zt,−(τ)AR(st, at)−

n∑
i=1

wizt,i(τ)ACi(st, at)

)
∇θ log π(st, at; θ)

]
(13)

=

∞∑
t=0

Est,at

[(
Eτ [zt,−(τ)]AR(st, at)−

n∑
i=1

wi Eτ [zt,i(τ)]ACi(st, at)

)
∇θ log π(st, at; θ)

]
(14)

The first part Eτ [zt,−(τ)] is the probability of not encountering any risks after taking (st, at). We
provide an estimation of this with a transformed summation of the risk critics, denoted ẑ−(st, at) =
e−κ

∑
i QCi

(st,at). For the second part Eτ [zt,i(τ)], similar to the first part, we use ẑi(st, at) =
QCi

(st, at) as an estimation. We conclude our objective suppression gradient:

∇θJ πθ
supp = Eτ

[
∞∑
t=0

(
ẑ−(st, at)AR(st, at)−

n∑
i=1

wiẑi(st, at)ACi(st, at)

)
∇θ log π(st, at; θ)

]
(15)

Combining with existing safe RL algorithms We empirically find that Objective Suppression
works better when combined with other safe RL algorithms. We conjecture that this is because
applying multiple regimes of constraint enforcement increases the coverage of different constraints,
preventing certain constraints from being dominated by others in one regime. In our experiments, we
build our method on top of Recovery RL by enforcing our objective suppression objective (15) on
both the task and recovery policy.

The original Recovery RL formulation relied on a pre-training stage in order to train the risk critic
from demonstrations. This ensures that the method is safe during exploration; however, we use a
purely online version of Recovery RL where the risk critic is trained jointly with the policy.

5 Experiments

5.1 Environments and baselines

Safe Mujoco-Ant This environment is adapted from the 8-DOF ant-v4 environment from gym [4]
Mujoco [17]. The main task of the agent is to control the ant to reach a target point. There are two
constraints in this environment. The first constraint is to avoid randomly spawned obstacles and the
second is to avoid collapsing.

Safe Bench This environment is a CARLA [8] based benchmark for safety in various different
driving scenarios [19]. The task reward comes from making progress along the designated route
while the constraints come from (1) collisions with obstacles (e.g., pedestrians, curbs, etc) which
will terminate the episode, and (2) leaving the lane, i.e. lateral deviation from the lane of travel. The
policy is given access to a bird-eve-view rendering of the scene in addition to a 4-D observation space
covering lane placement, speed, and the distances to objects. The action space is a continuous 2-D
space consisting of control parameters: acceleration and steering angle.

Baselines We test our objective suppression method in the two aforementioned environments, Safe
Mujoco-Ant and Safe Bench. We also implement two baselines, a naive Reward Penalty baseline,
where the optimization objective is a fine-tuned weighted sum of the task reward objective and risk
minimization objective; and Recovery RL [16].
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Table 1: Results in Safe Mujoco-Ant collected from 5 seeds with 20m environment steps each.
Standard deviations are shown in parentheses.

Name Task Reward ↑ Collisions ↓ Collapse ↓
Reward Penalty 1133.63 (321.17) 69.70 (32.68) 0.39 (0.10)
Recovery RL 1279.62 (143.40) 6.47 (1.88) 0.42 (0.20)
Ours (κ = 3) 1215.49 (143.40) 4.36 (0.75) 0.43 (0.08)
Ours (κ = 1) 1175.79 (172.13) 2.93 (0.67) 0.54 (0.12)

Table 2: Results in Safe Bench. All rows given 200k environment steps.

Name Task Reward ↑ Collisions ↓ Out-of-Lane ↓
Recovery RL 135.98 0.22 44.28
Ours 109.87 0.07 22.85

5.2 Results

Safe Mujoco-Ant We compare our method with Reward Penalty and Recovery RL. Every ex-
periment is run with 5 seeds. The results are shown in Table 1. For Reward Penalty, even with a
hyperparameter sweep, we could not find a suitable set of weights to reduce the number of collisions
without sacrificing too much task reward. Compared with Recovery RL, our method with κ = 3
achieves 33% less collisions at a mere expense of 5% less task reward.

We notice from our experimentation that although Recovery RL is able to effectively lower the
collisions compared with the Reward Penalty baseline thanks to its policy switching mechanism, it
struggles in training a good recovery policy. Even though policy switching eliminates the need to
optimize for both task reward and constraint avoidance, in our setting, the two constraint-minimization
objectives still constitute a conflicting training objective for the recovery policy, which is further
exacerbated by the lack of on-policy examples. In fact, one extremely sensitive hyperparameter to
tune for Recovery RL is the weight of the collapse-avoiding objective for the recovery policy. With
a high weight, the recovery policy ignores the collision-avoiding objective, resulting in a surge in
collisions; with a low weight, the recovery policy tends to collapse in front of obstacles, resulting in
a surge in collapsed finishes. The introduction of Objective Suppression effectively alleviates the
problem, striking a balance between the two constraints for the recovery policy. This demonstrates
how our method can shine in multi-constraint scenarios.

Safe Bench We compare our method with Recovery RL. Each method is evaluated using 50 rollouts
from the policy in different environments. The results are shown in Table 2. Compared with the
baseline Recoevery RL, our method outperforms on constraint satisfaction while only incurring a
small decrease in task reward.

6 Conclusion

We propose Objective Suppression, a novel algorithm that adaptively suppresses the task reward
objective to enforce safety constraints. Combined with existing safe RL algorithms, we demonstrate
that Objective Suppression can maintain the task reward of the base algorithm while significantly
lowering the constraint violations in multi-constraint scenarios, including an autonomous driving
domain where incorrect behaviors can be disastrous.
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